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Summary I
1. Why RL?
• Nature of  the problems for power system control: optimal, nonlinear, stochastic, and fast.

 RL is for optimal sequential decision making, which maximize an expected cumulative reward (certain objective).

 Compared with optimization approaches (e.g., stochastic programing), RL can handle system nonlinearity and 
stochasticity more easily. 

 RL optimal control policy is trained offline through simulation* and it only requires policy evaluation during real-time 
control, which provides great action readiness (suitable for scenarios that needs fast response). 

• Optimal control problems suitable for RL: sequential optimal control with strong temporal dependency. Not good for snapshot 
optimization such as solving OPF.

2. What’s the problem?
• Distribution system load restoration with renewable and dispatchable DERs

 Sequential optimal control with temporal dependency and uncertainty.

 Support the grid operator to take a sequence of  fast, correct and 
coordinated actions for fast system recovery.

• For a proof  of  concept, in this paper, a single-bus distribution system is considered, from energy adequacy perspective.
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Summary II 

3. How did it work?
• Compared the performance of  an RL controller and a deterministic MPC, 

given imperfect forecast of  future renewable generation.

 RL controller learned from experience that the imperfect renewable 
forecast cannot be fully trusted; the policy learned shows a more stable 
performance when compared with the MPC’s performance.

 RL controller’s performance does not deteriorate under unseen testing 
scenarios. (Good for real-world applications)

4. What’s next?
• Increase problem complexities:

 System complexity: e.g., consider power flow (e.g., using OpenDSS for simulation) and other operational constraints.

 Baseline complexity: e.g., use the state-of-the-art stochastic programming based controller as baseline.

 Uncertainty complexity: e.g., consider uncertainty in upstream substation restoration time.

• Explore the techniques for selecting a proper training data (scenario diversity  true distribution)
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Background

Many power system control problems require optimal and sometimes fast-response control to the nonlinear
system with consideration of  uncertainty. Oftentimes, these problems are solved by optimization-based 
approaches (e.g., model predictive control or stochastic programming). This study investigates an alternative 
controller based on reinforcement learning (RL).

RL Optimization-based

Real-time 
computation

Light, involving only policy evaluation. Optimal 
control can be generated instantly.

Heavy, requires solving optimization 
problem within control intervals.

Handling 
nonlinearity

Able to learn control policies
for non-linear systems.

Better if  system is linearized.

Handling 
stochasticity

Able to use raw historical data, learn distribution 
implicitly.

Treat as deterministic problem/scenario-
based stochastic programming/…

Training requirement Require, can be computationally intensive, offline. Not required.

In this study, the advantages of  using RL as an alternative for solving a power system optimal control problem 
will be explored. A distribution system load restoration problem is presented here.
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Load Restoration 
Problem V1 
(Single Bus Case)

Objective: 

During the upstream substation downtime, by leveraging renewable generations and 
properly controlling dispatchable generators accordingly, the control objective is to 
maximize the prioritized load pick-up with the consideration of  the penalty for repeated 
load shedding and renewable curtailment.

Assumptions: 

1. The network/power flow constraints are not considered. 

2. Fuel for micro-turbine and the initial storage for battery are limited, and these two 
dispatchable resources alone are not sufficient to restore the system.

3. Only imperfect forecast for renewable generation is available. 

4. The demand from each critical load (𝑝𝑝𝑖𝑖 ,∀ 𝑖𝑖 ∈ ℒ) is assumed to be time-invariant 
over the control horizon, and it can be partially restored. 

5. The length of  the restoration control horizon/upstream repair time is deterministic 
and known in advance (e.g., 6 hours.) and the control interval is five minutes.
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Load Restoration 
Problem V1 
(Single Bus Case)

Penalty term for shedding previously restored load.

Reward term for prioritized load restoration. Penalty term for renewable curtailment.

𝚮𝚮 = 𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑁𝑁 𝑇𝑇 ∈ ℝN

𝐏𝐏t = 𝑝𝑝𝑡𝑡1,𝑝𝑝𝑡𝑡2, … ,𝑝𝑝𝑡𝑡𝑁𝑁 𝑇𝑇 ∈ ℝN

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 + = (𝑥𝑥1 +, (𝑥𝑥2)+, … , (𝑥𝑥𝑁𝑁)+]
(𝑥𝑥𝑖𝑖)+= max(0, 𝑥𝑥𝑖𝑖)

PV: 𝜌𝜌
Wind: 𝜔𝜔
Storage: θ
Micro Turbine: 𝜇𝜇
Curtailment: 𝛼𝛼

ℛ = {𝜌𝜌,𝜔𝜔}

𝒢𝒢 = {𝜃𝜃,𝜇𝜇}

Notations:

Power balance

Load feasibility

Micro-turbine power feasibility

Micro-turbine energy availability

Storage power feasibility

Storage state equation

Storage SOC feasibility

Storage SOC initial value
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RL Formulation and Learning

 RL Markov decision process (MDP) formulation

State Space:

𝐬𝐬𝑡𝑡 = �𝑷𝑷𝑡𝑡
𝜌𝜌, �𝑷𝑷𝑡𝑡𝜔𝜔, 𝑆𝑆𝑡𝑡𝜃𝜃, ̇𝐸𝐸𝑡𝑡

𝜇𝜇, 𝟏𝟏
𝐓𝐓𝐏𝐏𝐭𝐭
𝟏𝟏𝐓𝐓𝐏𝐏

, 𝑡𝑡 ∈ ℝ24

r𝑡𝑡 = 𝐇𝐇𝑇𝑇𝐏𝐏𝑡𝑡 − 𝐇𝐇𝑇𝑇 𝐏𝐏𝑡𝑡−1 − 𝐏𝐏𝑡𝑡 + − 𝛽𝛽𝑝𝑝𝑡𝑡𝛼𝛼

𝐚𝐚𝑡𝑡 = 𝑝𝑝𝑡𝑡
𝜇𝜇, 𝑝𝑝𝑡𝑡𝜃𝜃, 𝑝𝑝𝑡𝑡𝛼𝛼 ∈ ℝ3

Action Space:

Reward structure:

Renewable prediction 
(imperfect) for the next hour Current system status Current control step

 RL Objective

𝜋𝜋∗ = argmax
𝜋𝜋𝒘𝒘∈Π

𝔼𝔼𝜋𝜋[�
𝑡𝑡∈𝒯𝒯

𝛾𝛾𝑡𝑡r𝑡𝑡]

Train an optimal control policy that maximize the control 
rewards:

where 𝜋𝜋𝒘𝒘 is a parameterized control policy (𝐚𝐚t = 𝜋𝜋𝒘𝒘(𝒔𝒔𝑡𝑡)), 
which is usually instantiated by a neural network in deep RL.

𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 + 𝛼𝛼�∇𝒘𝒘𝐽𝐽 𝒘𝒘 = 𝒘𝒘𝑡𝑡 + 𝛼𝛼�∇𝔼𝔼𝜋𝜋𝒘𝒘[�
𝑡𝑡∈𝒯𝒯

𝛾𝛾𝑡𝑡r𝑡𝑡]

A policy gradient algorithm uses gradient ascent for policy 
training:
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Controller Evaluation
 Experimenting framework

• Only imperfect forecast for renewable generations 
are available and are updated every time step.

• Optimization problems are solved at each control 
interval with reduce planning horizon.

Baseline: a deterministic model predictive control (MPC) 
based controller based on mixed integer linear 
programming (MILP) is used.

 Baseline controller
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Case Study
(Experiment Settings)

• Using an RL algorithm based on evolution strategies*.

• Training was conducted on ten computing nodes of  the NREL 
high-performance computing system.

• Policy converged in one hour, around140 million steps of  
experience. (Yes, ES-RL is known to have low sample efficiency, 
but the wall-time training efficiency is okay.)

* Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

 Learning curve

 Parameters

Training (July) Testing (August)

 Exogenous data splitting
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Case Study
(Results for the single-bus system)

 Single Scenario

• In general, RLC can achieve a higher reward when compared with 
the objective function value of the deterministic MPC. RLC shows a 
relatively more stable behavior (less variance over different 
scenarios).

Multiple Scenarios
In

cr
ea

si
ng

 P
ri
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it

y

• Load 1 (Highest priority)

• RL controller starts with less load restored, but gradually pick-
up more in a monotonic manner.

• MPC starts high, but Load 8 receives intermittent service and 
finally fully shed together with Load 7.   

Load 10 (Lowest priority) 
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Future work
(Network 
Constrained Case)

PVWT

ST𝜇𝜇T

+ other operational penalty (e.g., voltage deviation, line limit)

+ power flow network constraints, both active and reactive power.

Goal:

Using DERs for distribution system load restoration after a substation outage. 

Specific Objective: 

During the upstream substation downtime, maximizing the prioritized load pick-up 
with the consideration of  the penalty for repeated load shedding and renewable 
curtailment.
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